Three New Neolignans from the Aril of Myristica fragrans

by Fei Li and Xiu-Wei Yang*

The State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China (phone: +86-10-82805106; fax: +86-10-82802724; e-mail: xwyang@bjmu.edu.cn)

Three new neolignans, named 1-deoxycarinatone (1), isodihydrocarinatidin (2), and isolicarin A (3), together with the known neolignan (+)-dehydrodiisoeugenol (4), were isolated from mace (the aril of *Myristica fragrans* HOUTT.). Their structures were elucidated as 2-[(1S)-2-(4-hydroxy-3-methoxyphenyl)-1-methylethyl]-6-methoxy-4-(prop-2-enyl)phenol (1), 4-[(2R,3R)-2,3-dihydro-7-methoxy-3-methyl- $5-(prop-2-enyl)benzofuran-2-yl]-2-methoxyphenol (2), and 4-{(2S,3R)-2,3-dihydro-7-methoxy-3-meth$ yl-5-[(1E)-prop-1-enyl]benzofuran-2-yl]-2-methoxyphenol (3) on the basis of spectroscopic data.

Introduction. – Mace, the aril of *Myristica fragrans* HOUTT. (Myristicaceae), is a well-known traditional Chinese medicine. It has been widely used as spice and a valuable remedy in traditional Chinese medicine for strengthening the stomach and expelling 'wind-all' [1]. Various neolignanoids from the mace have been reported [2–6]. Some of them exhibited significant dental-caries prevention against *Streptococcus mutans* [6] and antioxidation effects *in vivo* and on antilipid peroxidation in a rat-liver homogenate *in vitro* [7]. The aim of our work was to further investigate the chemical constituents of mace. Herein we describe the isolation and structural elucidation of three new neolignans, named 1-deoxycarinatone (1), isodihydrocarinatidin (2), and isolicarin A (3), together with one known neolignan, (+)-dehydrodiisoeugenol (4).

Results and Discussion. – Compound **1** was isolated as an oil. The molecular formula of **1** was determined to be $C_{20}H_{24}O_4$ by HR-ESI-MS ($[M + Na]^+$ at m/z 351.1566). The IR spectrum showed the presence of OH (3359 cm⁻¹), aromatic (1603, 1515, and 1463 cm⁻¹) and Me (1378 cm⁻¹) groups. The structure of **1** was deduced from its ¹H- and ¹³C-NMR data (*Table*) and comparison of the latter with those of carinatone (=(2S)-1-(3,4-dimethoxyphenyl)-2-[2-hydroxy-3-methoxy-5-(prop-2-enyl)phenyl]-propan-1-one) [8] and 2-(2,6-dimethoxy-4-(prop-2-enyl)phenoxy)-1-(4-hydroxy-3-methoxyphenyl)propan-1-ol [4].

The absolute configuration of **1** was established as (*S*) on the basis of the negative *Cotton* effect at 260–285 nm in its CD spectrum and the $[\alpha_D]$ value ($[\alpha]_D^{20} = +33.3$), which were opposite to those of carinatone [8] (notice that the stereodescriptor is (*S*) in both cases). Compound **1** was named 1-deoxycarinatone (=2-[(1*S*)-2-(4-hydroxy-3-methoxyphenyl)-1-methylethyl]-6-methoxy-4-(prop-2-enyl)phenol).

The ¹H- and ¹³C-NMR data of **1** indicated the presence of two MeO (δ (H) 3.81 (s) and 3.87 (s); δ (C) 55.8 and 56.0), a Me (δ (H) 1.18 (d, J = 7.0 Hz); δ (C) 19.3), and a prop-2-enyl group. In addition, the

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

signals of five aromatic protons were observed and distributed to two aromatic rings on the basis of the coupling constants in the ¹H-NMR spectrum, where two *m*-positioned protons of one aromatic ring appeared at $\delta(H)$ 6.55 (d, J = 2.0 Hz) and 6.60 (d, J = 2.0 Hz), and three protons of the other aromatic ring appeared at $\delta(H)$ 6.62 (d, J = 2.0 Hz), 6.66 (dd, J = 2.0 Hz), and 6.78 (d, J = 8.0 Hz) as an *ABX* system. Comparison with ¹³C-NMR data of carinatone [8] and 2-[(2,6-dimethoxy-4-(prop-2-enyl)phenoxy]-1-(4-hydroxy-3-methoxyphenyl)propan-1-ol [4] led to the conclusion that a 2-hydroxy-3-methoxy-5-(prop-2-enyl)phenyl and a 4-hydroxy-3-methoxyphenyl groups existed in **1**. Further, two *dd* at $\delta(H)$ 2.65 (*dd*, J = 8.5, 13.5 Hz, 1 H) and 2.94 (*dd*, J = 6.0, 13.5 Hz, 1 H), a Me group at $\delta(H)$ 1.18 (d, J = 7.0 Hz), and a CH group at $\delta(H)$ 3.37 (*ddt*, J = 6.0, 7.0, 8.5 Hz) in the ¹H-NMR spectrum of **1** suggested a partial structure Ph-CH₂-CH(R)-Me in the molecule [3]. In the EI-MS of **1**, the molecular ion at *m/z* 328 (M^+) and fragment ions at *m/z* 191 ([2-hydroxy-3-methoxy-5-(prop-2-enyl)phenylethane]⁺, base peak) and 137 [4-hydroxy-3-methoxyphenylmethylene]⁺), and their corresponding dehydroxyl fragment ions at *m/z* 175 and 121 supported also the structure of **1**.

Compound **2** was isolated as an oil with the molecular formula $C_{20}H_{22}O_4$, which was consistent with the analysis of the HR-EI-MS (M^+) at m/z 326.1515).

The ¹H- and ¹³C-NMR data of **2** (*Table*) and comparison with those of dihydrocarinatidin (=4-[(2*S*,3*S*)-2,3-dihydro-7-methoxy-3-methyl-5-(prop-2-enyl)-benzofuran-2-yl]-2-methoxyphenol) [9–12] suggested that **2** was the enantiomer of dihydrocarinatidin [13]. By comparison of the optical rotation ($[\alpha]_D^{20} = +15.0$) of **2** with that of dihydrocarinatidin ($[\alpha]_D^{20} = -12.7$), the absolute configuration of **2** was determined to be (2*R*,3*R*) (systematic atom numbering). The positive *Cotton* effect at 260–285 nm in the CD spectrum of **2** further supported the above inference [14]. Therefore, the structure of **2** was concluded to be 4-[(2*R*,3*R*)-2,3-dihydro-7-methoxy-3-methyl-5-(prop-2-enyl)benzofuran-2-yl]-2-methoxyphenol and named isodihydrocarinatidin.

The ¹H-NMR data of **2** were similar to those of dihydrocarinatidin with a *trans*-2-aryl-2,3-dihydro-3methylbenzofuran moiety, which showed characteristic signals at δ 5.08 (d, J = 9.5 Hz) for H–C(a) and 1.37 (d, J = 7.0 Hz) for Me(γ) [9–12]¹). The ¹³C-NMR data indicated the presence of a 3-methoxy-5-

¹⁾ Arbitrary atom numbering; for systematic names, see, e.g., Exper. Part.

	To min II I Aloni	TOT NIN COC WITE T TO MM T VILL		,		
Position	1	2	3	4	_	
	δ(H)	$\delta(C) = \delta(H)$	$\delta(C) = \delta(H)$	δ(C) 6	(H)	$\delta(C)$
C(1)		132.2	132.2	130.9		132.1
H-C(2)	$6.62 \ (d, J = 2.0)$	111.7 $6.98 (d, J = 1.5)$	108.9 6.87 $(d, J = 2.0)$	109.0	(0.97 (d, J = 1.5))	108.8
C(3)		146.1	146.6	146.2		146.6
C(4)		143.5	145.7	144.9		145.7
H-C(5)	6.78 (d, J = 8.0)	113.8 $6.88 (d, J = 7.5)$	114.0 $6.88 (d, J = 8.0)$	114.1 (5.88 (d, J = 8.0)	114.0
H-C(6)	$6.66 \ (dd, J = 2.0, 8.0)$	121.9 6.91 $(dd, J = 1.5, 7.5)$	119.9 6.79 $(dd, J = 2.0, 8.0)$	119.5	$5.91 \ (dd, J = 1.5, 8.0)$	119.8
C(1')		133.3	133.2	134.3		133.2
C(2')		146.0	145.7	146.2		146.5
C(3')		141.2	144.0	144.0		144.0
H-C(4')	6.60 (d, J = 2.0)	108.5 6.63 (br. s)	$109.1 6.80 \; (br. s)$	109.1	5.79 (br. s)	109.3
C(5')		130.9	133.5	132.2		132.0
H-C(6')	6.55 (d, J = 2.0)	121.9 6.60 (br. s)	111.8 6.78 (br. s)	113.9 (5.76 (br. s)	113.2
$CH_2(\alpha)$ or $H-C(\alpha)$	2.65 (dd, J = 8.5, 13.5),	$50.4 5.08 \ (d, J = 9.5)$	93.7 5.77 (d, J = 8.5)	88.7 5	5.10 (d, J = 9.0)	93.6
	$2.94 \ (dd, J = 6.0, 13.5)$					
$H-C(\beta)$	3.37 (ddt, J = 6.0, 7.0, 8.5)	42.7 3.45 $(dq, J = 7.0, 10.0)$	$45.7 3.59 \ (dq, J = 7.0, 8.5)$	41.5 3	$3.45 \ (dq, J = 7.0, 9.5)$	45.5
$Me(\gamma)$	1.18 (d, J = 7.0)	19.3 1.37 $(d, J = 7.0)$	$17.4 0.83 \ (d, J = 7.0)$	17.0	L38 $(d, J = 6.5)$	17.4
$CH_2(\alpha')$ or $H-C(\alpha')$	3.30 (d, J = 6.5)	$40.1 3.36 \ (d, J = 6.5)$	40.2 6.35 $(dd, J = 1.5, 15.5)$	130.9 (5.36 (dd, J = 1.5, 15.5)	130.8
$H-C(\beta')$	5.95 (ddt, J = 6.5, 8.2, 13.5)	137.9 6.00 (ddt, $J = 6.5, 8.2, 13.5$)	137.9 6.10 $(dq, J = 6.5, 15.5)$) 123.4 ($5.10 \ (dq, J = 6.5, 15.5)$	123.3
$\operatorname{CH}_2(\gamma')$ or $\operatorname{Me}(\gamma')$	5.03 (ddt, $J = 1.5$, 4.3, 8.2), 5.05 (ddt, $J = 1.5$, 4.3, 13.5)	115.4 5.06 (ddt, $J = 1.5$, 3.0, 8.2), 5.13 (ddt, $J = 1.5$, 3.0, 13.5)	115.6 1.86 $(dd, J = 1.5, 6.5)$	18.3	$87 \ (dd, J = 1.5, 6.5)$	18.2
MeO	3.81 (s)	55.8 3.87 (s)	$56.0 3.87 \ (s)$	55.9 3	3.88(s)	55.8
MeO	3.87(s)	$56.0 \ 3.88 \ (s)$	$56.0 \ 3.92 \ (s)$	55.9	3.89(s)	55.8
НО	5.59 (s)	5.63(s)	5.57(s)	4,	5.62 (s)	

Table 1. ¹*H*- and ¹³*C*-*NMR Data of* $\mathbf{1-4}$. At 500 and 125 MHz, resp., in CDCl₃; δ in ppm, *J* in Hz.

(prop-2-enyl) phenyl and a 4-hydroxy-3-methoxyphenyl moiety in the molecule, which were in agreement with fragmentation ions at m/z 147 ([3-methoxy-5-(prop-2-enyl)phenyl]⁺) and 123 ([4-hydroxy-3-methoxyphenylmethylene]⁺) in the EI-MS.

The molecular formula for compound **3** was established as $C_{20}H_{22}O_4$ on the basis of HR-EI-MS data (M^+ at m/z 326.1516) and the total number of C- and H-atoms was estimated from the NMR (*Table*) spectra. The ¹H-NMR data indicated the presence of a *cis*-2-aryl-2,3-dihydro-3-methylbenzofuran moiety [14][15] in **3**, and further data suggested that **3** was a diastereoisomer of dehydrodiisoeugnol (=4-{(2R,3R)-2,3-dihydro-7-methoxy-3-methyl-5-[(1E)-prop-1-enyl]benzofuran-2-yl}-2-methoxyphenol; **4**. The absolute configuration of **3** was established as (2S,3R) (systematic atom numbering) on the basis of the positive *Cotton* effect at 260–285 nm in its CD spectrum and the [α_D] value ([α]²⁰_D = -24.2), which were compared with those of (-)-7-epiconocarpan (=(7S,7'E,8R)-4',7-epoxy-8,3'-neolignan-7'-ene-4-ol = 4-{(2S,3R)-2,3-dihydro-3-methyl-5-[(1E)-prop-1-enyl]benzofuran-2-yl}phenol) [14]. Therefore, the structure of **3** was determined to be 4-{(2S,3R)-2,3-dihydro-7-methoxy-3-methyl-5-[(1E)-prop-1-enyl]benzofuran-2-yl}phenol) [14].

The ¹H-NMR spectrum of **3** revealed signals at $\delta(H) 5.77 (d, J=8.5 \text{ Hz}, H(\alpha))$, $3.59 (dq, J=7.0, 8.5 \text{ Hz}, H(\beta))$, and $0.83 (d, J=7.0 \text{ Hz}, \text{Me}(\gamma))^1$), typical for a *cis*-2-aryl-2,3-dihydro-3-methylbenzofuran moiety [14][15]. The (1*E*)-prop-1-enyl group was evident from the presence of an *AMX*₃ spin system at $\delta(H) 6.35 (dd, J=1.5, 15.5 \text{ Hz}, H(\alpha'))$, $6.10 (dq, J=6.5, 15.5 \text{ Hz}, H(\beta'))$, and $1.86 (dd, J=1.5, 6.5 \text{ Hz}, \text{Me}(\gamma'))^1$). The five aromatic protons of **3** appeared as an *ABX*-type pattern ($\delta(H) 6.79 (dd, J=2.0, 8.0 \text{ Hz})$, 6.87 (d, J=2.0 Hz), and 6.88 (d, J=8.0 Hz)), and as that of two *m*-positioned protons ($\delta(H) 6.78 (\text{br.} s)$ and 6.80 (br. s)). Their substitution patterns agreed with those of dehydrodiisoeugnol (=(+)-licarin A; **4**) [16][17]. The EI-MS showed the molecular-ion peak at *m*/*z* 326 (base peak) and fragment ions at *m*/*z* 309 ([*M* - OH]⁺), 295 ([*M* - MeO]⁺), 264 ([*M* - 2 MeO]⁺), 147 ([3-methoxy-5-(prop-1-enyl)phenyl]⁺), and 137 ([4-hydroxy-3-methoxyphenylmethylene]⁺), which were consistent with a dehydrodiisoeugnol structure [16].

This work was financially supported by the *State Science and Technology Research Projects* (No. 99-929-01-25) and the *Beijing Municipal Special-Purpose Science Foundation of China* (Z0004105040311).

Experimental Part

General. Column chromatography (CC): neutral aluminium oxide (activated, 150 mesh; *Merck*). TLC: silica gel GF_{254} plates (*Merck*). Semi-prep. HPLC: *P680* chromatograph (*Dionex Co.*, CA); *UVD170U* detector; *Phenomenex-Luna-10-C18-(2)* column (250 mm × 21.2 mm (i.d.), 10 µm); flow rate 9.9 ml/min, eluting with MeOH/H₂O. Optical rotations: *Perkin-Elmer 243B* polarimeter; in CHCl₃. UV Spectra: *Varian Cary-300-UV-VIS* spectrometer; in MeOH; λ_{max} (log ε) in nm. CD Spectra: *Jasco J-810* spectropolarimeter; in MeOH. IR Spectra: *Thermo-Nicolet Nexus-470-FT-IR* spectrometer; KBr pellets; in cm⁻¹. NMR Spectra: *Varian INOVA-500* spectrometer; at 500 (¹H) and 125 MHz (¹³C); in CDCl₃; δ in ppm rel. to SiMe₄, *J* in Hz. MS: *Finnigan Trace-2000-GC-MS* spectrometer for EI and a *Bruker Daltonics-Apex-IV Fourier*-transform *ICR* high-resolution spectrometer for HR-ESI and HR-EI; in *m/z*.

Plant Material. The aril of M. fragrans (mace) was purchased from W. Wilbert Co., Colombo, Sri Lanka.

Extraction and Isolation. The powdered mace (936 g) was extracted with MeOH (3×3000 ml) at r.t., 4 h each. After solvent evaporation, 209.5 g of the residue was obtained, which was dissolved in 95% aq. MeOH and extracted with hexane to afford a hexane (113 g) and a 95% aq. MeOH (176.5 g) extract, resp. The 95% MeOH extract (84.5 g) was dissolved in Et₂O (1.0 l), and extracted with 5% HCl soln.

 $(3 \times 150 \text{ ml})$. The residual org. layer was neutralized and extracted with 5% NaHCO₃ soln. $(3 \times 150 \text{ ml})$. The 5% NaHCO₃ soln. was acidified to pH 4 and extracted with Et₂O $(3 \times 150 \text{ ml})$. The Et₂O soln. was concentrated to afford an acidic fraction (1.0 g). The 5% NaHCO₃-treated org. layer was washed with 5% NaOH soln. $(3 \times 150 \text{ ml})$ and then concentrated to afford a neutral fraction (30 g). The neutral fraction (9.3 g) was subjected to CC (neutral alumina 80 cm \times 7 cm (i.d.) column, benzene/AcOEt (0-100%): *Fractions 1–20 (ca.* 1000 ml each). *Fr.* 8 (600 mg) was purified by semi-prep. reversed-phase HPLC (MeOH/H₂O 65:35): **1** (1.2 mg), **2** (1.5 mg), **3** (1.7 mg), and **4** (500 mg).

1-Deoxycarinatone (=2-[(1S)-2-(4-Hydroxy-3-methoxyphenyl)-1-methylethyl]-6-methoxy-4-(prop-2-enyl)phenol; 1): Oil. [<math>a]₂₀^D = +33.3 (c = 0.6, CHCl₃). CD (MeOH): 225 (neg.), 240 (pos.), 252 (neg.), 291 (neg.). UV (MeOH): 230 (3.94), 280 (3.49). IR (KBr): 3359, 2924, 2854, 1603, 1515, 1463, 1378, 1316, 1272, 1123, 1042, 929, 862. ¹H- and ¹³C-NMR: *Table*. EI-MS: 328 (M^+), 191 (100, [2-hydroxy-3-methoxy-5-(prop-2-enyl)phenylethane]⁺), 175 [3-methoxy-5-(prop-2-enyl)phenylethane]⁺), 137 ([4-hydroxy-3-methoxyphenylmethylene]⁺), 121 ([3-methoxyphenylmethylene]⁺). HR-ESI-MS: 351.1566 ([M + Na]⁺, C₂₀H₂₄NaO⁴₄; calc. 351.1567).

 $\begin{array}{l} Isodihydrocarinatidin (= 4-[(2R,3R)-2,3-Dihydro-7-methoxy-3-methyl-5-(prop-2-enyl)benzofuran-2-yl]-2-methoxyphenol; {\bf 2}): Oil. [a]_D^{20} = +15.0 (c = 0.6, CHCl_3). CD (MeOH): 225 (neg.), 240 (pos.), 261 (pos.). UV (MeOH): 238 (4.13), 282 (3.81). IR (KBr): 3449, 2960, 2929, 1606, 1516, 1495, 1453, 1328, 1270, 1205, 1139, 1032, 952, 852, 820. ^{1}H- and ^{13}C-NMR: Table. EI-MS: 326 (100,$ *M*⁺), 311 ([*M*- Me]⁺), 295 [*M*- MeO]⁺), 147 ([3-methoxy-5-(prop-2-enyl)phenyl]⁺), 137 ([4-hydroxy-3-methoxy-phenylmethylene]⁺). HR-EI-MS: 326.1515 (*M* $⁺), C₂₀H₂₂O₄⁺; calc. 326.1518). \end{array}$

Isolicarin A (=4-{(2\$,3\$,R)-2,3-Dihydro-7-methoxy-3-methyl-5-[(1E)-prop-1-enyl]benzofuran-2-yl]-2-methoxyphenol; **3**): Oil. $[a]_{D}^{20} = -24.2$ (c = 1.1, CHCl₃). CD (MeOH): 220 (neg.), 243 (pos.), 289 (neg.). UV (MeOH): 221 (3.94), 272 (3.67). IR (KBr): 3420, 2924, 2853, 1608, 1518, 1500, 1453, 1339, 1270, 1217, 1143, 1031, 966, 862, 818. ¹H- and ¹³C-NMR: *Table*. EI-MS: 326 (100, M^+), 311 ($[M - Me]^+$), 309 ($[M - OH]^+$), 295 ($[M - MeO]^+$), 264 ($[M - 2 MeO]^+$), 147 ([3-methoxy-5-(prop-1-enyl)phenyl]^+), 137 ([4-hydroxy-3-methoxyphenylmethylene]⁺). HR-EI-MS: 326.1516 (M^+ , C₂₀H₂₂O₄⁺; calc. 326.1518).

(+)-*Dehydrodiisoeugenol* (4): White amorphous powder. $[a]_{D}^{20} = +18.0$ (c = 1.0, CHCl₃). CD (MeOH): 225 (neg.), 266 (pos.), 307 (neg.). UV (MeOH): 218 (4.06), 274 (3.82). IR (KBr): 3419, 2951, 2925, 1610, 1518, 1496, 1453, 1336, 1274, 1220, 1144, 1030, 954, 861, 810. ¹H- and ¹³C-NMR: *Table*. EI-MS: 326 (100, M^+), 311 ($[M - Me]^+$), 309 ($[M - OH]^+$), 295 ($[M - MeO]^+$), 264 ($[M - 2 MeO]^+$), 147 ([3-methoxy-5-(prop-1-enyl)phenyl]⁺), 137 ([4-hydroxy-3-methoxyphenylmethylene]⁺). The above NMR and MS data were in agreement with those of dehydrodiisoeugenol [14].

REFERENCES

- The State Pharmacopoeia Commission of P. R. China, 'Chinese Pharmacopoeia, Vol. 1', Chemical Industry Press, Beijing, 2005, p. 102–103.
- [2] M. Hattori, X. W. Yang, Y. Z. Shu, N. Kakiuchi, Y. Tezuka, T. Kikuchi, T. Namba, Chem. Pharm. Bull. 1988, 36, 648.
- [3] M. Hattori, S. Hada, Y. Z. Shu, T. Kikuchi, T. Namba, *Chem. Pharm. Bull.* **1987**, *35*, 668.
- [4] M. Hattori, S. Hada, Y. Kawata, Y. Tezuka, T. Kikuchi, T. Namba, Chem. Pharm. Bull. 1987, 35, 3315.
- [5] S. Hada, M. Hattori, Y. Tezuka, T. Kikuchi, T. Namba, Phytochemistry 1988, 27, 563.
- [6] M. Hattori, S. Hada, A. Watahiki, H. Ihara, Y. Z. Shu, N. Kakiuchi, T. Mizuno, T. Namba, Chem. Pharm. Bull. 1986, 34, 3885.
- [7] M. Hattori, X. W. Yang, H. Miyashiro, T. Namba, Phytother. Res. 1993, 7, 395.
- [8] K. Kawanishi, Y. Uhara, Y. Hashimoto, Phytochemistry 1982, 21, 929.
- [9] I. R. Nascimento, L. M. X. Lopes, *Phytochemistry* 1999, 52, 345.
- [10] H. Achenbach, J. Groß, X. A. Dominguez, G. Cano, J. V. Star, L. C. del Brussolo, G. Muñoz, F. Salgado, L. Lóez, *Phytochemistry* 1987, 26, 1159.
- [11] J. M. David, M. Yoshida, O. R. Gottlieb, *Phytochemistry* 1994, 36, 491.
- [12] S. Li, T. Iliefski, K. Lundquist, A. F. A. Wallis, Phytochemistry 1997, 46, 929.

- [13] K. Kawanishi, Y. Uhara, Y. Hashimoto, Phytochemistry 1983, 22, 2277.
- [14] P. J. C. Benevides, P. Sartorelli, M. J. Kato, Phytochemistry 1999, 52, 339.
- [15] O. A. Lima, O. R. Gottlieb, M. T. Magalhaes, Phytochemistry 1972, 11, 2031.
- [16] X. W. Yang, M. M. T. Aihemaiti, Q. Li, W. Xu, Z. Yang, S. Y. Xiao, Chin. Tradit. Herb. Drugs 2003, 34 (Suppl.), 93.
- [17] I. R. Nascimento, L. M. X. Lopes, L. B. Davin, N. G. Lewis, Tetrahedron 2000, 56, 9181.

Received April 3, 2007